Green Computing: Hype or Hard Truth?

> *Yuvraj Agarwal* yuvraj@cs.ucsd.edu

http://mesl.ucsd.edu/yuvraj Jan 25th, 2010

Outline:

- Where does the energy go in buildings?
 - Estimated > 70% total energy use in the US
 - Factors affecting building energy use
- Does IT power really matter?
 - Air-conditioning ? Lighting?
- Can we actually reduce our energy footprint?
 Somniloquy, Sleep-Servers and beyond!

UCSD Campus as a Testbed

- 1200 acres, borders the Pacific Ocean
 450+ buildings
- 45,000 people = 29000 students + staff
 10,000 on campus residents
- Power Demand around 45MW!
 USD (13MW), City of San Diego (~50MW)

UCSD is like a small town with its own utility

- We co-generates most (up to 80%) of our power
 - Import the rest from SDGE (5MW to 20MW)
 - Participate in demand response (DR)

Use Modality of Buildings: Macro Scale

- Compare different builds across campus
 Residential, "mixed-use", highly IT centric
- As IT load increases, so does watts/sq-ft!

Mixed-Use Buildings: CSE Department!

- Large mixed use building:
 - Nominally 600 people, increases by 1.7x
 - 750+ desktops (+200 undergrad labs) + servers
 - Closed loop and zonal climate control
 - Served by campus chilled and hot water loop
- Look at trends: yearly, weekly, daily?

CSE Building Energy Use Trends:

- Yearly variation not much (across seasons)
 - "Base load" of CSE is over 325KW all year!
 - Seasons don't have much effect, neither do breaks

CSE Building: Weekly variation

- Weekly Variations:
 - Effect of Weekends is clearly observable
- Dynamic variation: 325KW to 600KW at peaks

– "Base load" still remains at 325KW!

Further Breakdown of CSE base loads

- Instrument the CSE department
 - Sensors to measure power
 - Breakdown based on :
 - Subsystems: Air Conditioning, Lighting, ...
 - Individual floors, circuits (Macro Scale)
- Measuring individual PCs
 - Power/Energy Usage (Micro Scale)
- Objectives:
 - Build better energy models
 - *Measure* effectiveness of energy management schemes

CSE Building Floorplan

Contributors of the CSE base load:

- 16+ individual meters, grouped into 4 categories
 - Machine Room (Servers + HVAC)
 - Plug-Loads: Mostly PCs (we are a CSE department!)
 - Lighting: Includes everything, including emergency
 - Mechanical: Air-handlers, chilled water pumps, etc

Contributors of the CSE base load:

- IT loads account for 50% (peak) to 80% (off-peak)!
 Includes machine room + Plug Loads
- Most IT equipment not powered off or put to S3
- Largest dynamic variation in "mechanical loads"

Outline:

- Where does the energy go in buildings?
 - Estimated > 70% total energy use in the US
 - Factors affecting building energy use
- Does IT power really matter?
 - Air-conditioning ? Lighting?
- Can we actually reduce our energy footprint?
 Somniloquy, Sleep-Servers and beyond!

IT Equipment Consumes Significant Power

- Yet, shutdown opportunities are rarely used
- Studies and our own data shows:
 - 67% of office PCs are left on after work hours
 - "Sleep" modes used in less than 4% of these PCs! [1]
 - Home PCs are left on for 34% of the time
 - 50% of the time they are not being used
- Confirmed by our measurements: CSE@UCSD
 - 600+ desktops left always on (total=700+)
 - @150W each → 100kW (25% of total energy bill)
 - Used network measurements (ARPs + ICMPs)

[1] J. Roberson et al. "After-hours Power Status of Office Equipment and Energy use of Miscellaneous Plug-load Equipment. *Lawrence Berkeley National Laboratory, Berkeley, California. Report# LBNL-53729-Revised, 2004*

Saving Power Runs into Usability

- Reasons why users do not switch off their PCs
 - Maintain state: desktop and applications preferences
- > Occasional access
 - Remote desktop/SSH, accessing files
 - Administrative: updates, patches, backups
- Active applications running
 - Maintaining presence: e.g. incoming Skype call, IM
 - Long running applications: Web downloads, BitTorrent

Cannot be handled by low-power modes (e.g. Sleep, Hibernate)

Power Management vs. Use Models

- Current design trends in power management:
 - Hosts (PCs): either *Awake* (Active) or *Sleep* (Inactive)
 - Power consumed when Awake = <u>100X</u> power in Sleep!
 - Network: Assumes hosts are always "Connected" (Awake)
- What users really want:
 - Provide functionality of an Awake (active) host...

....While consuming power as if in *Sleep* mode

Resume host to Awake mode only if needed

Change the fundamental distinction between Sleep and Active states...

Augment the Network Interface of PCs

- Objective: Make PCs responsive even when asleep
 - Maintain availability across the entire protocol stack
 - E.g. ARP(layer 2), ICMP(layer 3), SSH (Application layer)
 - Without making changes to the infrastructure or user behavior

Somniloquy*: PCs that Talk in their Sleep

- Augment network interfaces:
 - Add a separate power domain
 - Powered on when host is asleep
 - Processor + Memory + Flash Storage + Network stack
 - Same MAC/IP Address
- Wake up Host when needed
 - E.g. incoming connection
- Handle some applications while PC remains asleep
 - Using "application stubs"

17

Desktops: Power Savings with Somniloquy

State	Power
Normal Idle State	102.1W
Lowest CPU frequency	97.4W
Disable Multiple cores	93.1W
"Base Power"	93.1W
Suspend state (S3)	1.2W

Dell Optiplex 745 Power Consumption and transitions between states

Using Somniloquy:

- Power drops from >102W to <3W
- Assuming a 45 hour work week
 - 620kWh saved per year
 - US \$56 savings (at 9cents/KWHr)

Laptops: Extends Battery Lifetime

IBM X60 Power Consumption

Using Somniloquy:

- Power drops from >11W to 1W,
 - Battery life increases from <6 hours to >60 hours
- Provides functionality of the "Baseline" state
 - Power consumption similar to "Sleep" state

Stateful Application: Energy Savings

- Web download "stub" on the gumstix
 - 200MB flash, download when Desktop PC is asleep
 - Wake up PC to upload data whenever needed

- 92% less energy than using the host PC for download

Deploying Somniloquy at UCSD

- *Enterprise* environments:
 - Adding Somniloquy hardware to desktop PCs costly
 - Management, maintenance costs
- "Somniloquy" without adding hardware?
 - Yes It is possible....
 - However, need some help from the network
 - Stubs: Can we generate them automatically?
- Individual desktops/Laptops: Somniloguy needed

Enter Sleep-Servers:

• For each "asleep" host PC

-Instantiate a minimal *image* on a Sleep-Server

- When host transitions to Sleep
 - Its *image* on the Sleep Server can:
 - Maintain network presence
 - Watch for triggers to wake up
 - Execute application stubs

Sleep Servers: Energy Savings

- Server class machine:
 - Can support hundreds of desktops (200+)
 - One server (~300Watts), each desktop (~150W)
 - Single point of management
 - No hardware additions to host PCs!
 - > 100x Energy Savings, easily deployable in enterprises
- UCSD / CSE : 650 desktops PCs
 - Potential savings: \$37,000/year (8 hours/day + weekends)

Sleep-Servers Status

- Currently we have:
 - An implementation for Windows, Linux host PCs
 - UCSD patent pending for our architecture
- Further Steps:
 - Scale up to hundreds of host PCs on single server
 - Deploy widely within CSE building (Need you!)
 - Implement for other OSes (MAC, ...)
 - What about servers in the machine room?

Energy Dashboard: Detailed Accounting

- Measuring individual plug loads (30 meters)
 - Commercial WattsUP meters (~150\$)
 - Building our own wireless power meter (< 20\$)
 - Measurement and Management
 - Objective: Educate users about their power usage
 - Easy custom data logging interface to our servers
- Measuring aggregate power loads (15 meters)
 - Commercial Schneider Meters (~3000\$)
 - Interfacing a challenge: proprietary interfaces

Energy Dashboard: Demo!

http://power.ucsd.edu

Thank you!

Questions?

http://mesl.ucsd.edu/yuvraj

* Come find me (CSE 2116) if you want to be a tester for Sleep-Servers! * Also come find me if you want to work on cool projects.

Wake-on-LAN – Limitations

- Runs into usability
 - Need MAC address, modifications at remote end
- Requires BIOS/Operating System support
- Requires router infrastructure support
 - Cannot go across subnets, (subnet broadcast)
- Granularity is very coarse
 - Too few or too many wakeups
- Very limited in functionality
 - No support for application stubs